# Make-Up Examination <br> Partial Differential Equations (MATH4220) <br> (Academic Year 2023/2024, Second Term) 

Date: March 20th, 2024.
Time allowed: 8:30-10:15
Recall that, the solution $u$ for 1D heat equation

$$
\left\{\begin{aligned}
\partial_{t} u=\partial_{x}^{2} u, & \text { in }(t, x) \in[0, \infty) \times \mathbb{R}_{x}, \\
u_{\mid t=0}=\phi(x), & \text { for } x \in \mathbb{R}_{x}
\end{aligned}\right.
$$

is given by

$$
u(t, x)=\int_{\mathbb{R}} S(t, x-y) \phi(y) \mathrm{d} y, \quad \text { where } S(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

For any $r>0$, we denote

$$
B_{r}=\left\{x \in \mathbb{R}^{3}:|x| \leq r\right\} \quad \text { and } \quad \partial B_{r}=\left\{x \in \mathbb{R}^{3}:|x|=r\right\} .
$$

1. Consider the following four questions.
(a) (5 points) State the definition of a linear PDE problem.
(b) (5 points) State the definition of a harmonic function.
(c) (5 points) State the definition of the well-posed problem.
(d) (5 points) State the definition of the mean-value property.
(e) (10 points) State the classification of the following second-order PDE:

$$
a_{11} \partial_{x}^{2} u+2 a_{12} \partial_{x y} u+a_{22} \partial_{y}^{2} u+a_{1} \partial_{x} u+a_{2} \partial_{y} u+a_{0} u=0,
$$

where $a_{11}^{2}+a_{12}^{2}+a_{22}^{2} \neq 0$.
2. (15 points) Suppose that $u$ is harmonic in $B_{r} \backslash\{0\}$ and satisfies

$$
u(x)=o\left(|x|^{-1}\right) \quad \text { as } x \rightarrow 0
$$

Show that $u(x)$ can be defined at 0 and $u(x)$ is harmonic on $B_{r}$.
3. Let $u=u(x)$ be a regular function on $\mathbb{R}^{3}$.
(a) (5 points) Show that

$$
\int_{\mathbb{R}^{3}}(x \cdot \nabla u) \Delta u \mathrm{~d} x=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla u|^{2} \mathrm{~d} x .
$$

(b) (5 points) Show that

$$
\int_{\mathbb{R}^{3}}(x \cdot \nabla u) u \mathrm{~d} x=-\frac{3}{2} \int_{\mathbb{R}^{3}}|u|^{2} \mathrm{~d} x .
$$

(c) (5 points) Show that

$$
\int_{\mathbb{R}^{3}}(x \cdot \nabla u) u^{3} \mathrm{~d} x=-\frac{3}{4} \int_{\mathbb{R}^{3}}|u|^{4} \mathrm{~d} x .
$$

4. (15 points) Let $u$ be a regular solution of the following nonlinear elliptic equation,

$$
-\Delta u+u-u^{3}=0, \quad \text { on } \mathbb{R}^{3} .
$$

Show that

$$
\begin{aligned}
& K_{1}(u)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}+|u|^{2}-|u|^{4}\right) \mathrm{d} x=0, \\
& K_{2}(u)=\int_{\mathbb{R}^{3}}\left(|\nabla u|^{2}-\frac{3}{8}|u|^{4}\right) \mathrm{d} x=0 .
\end{aligned}
$$

5. (10 points) Derive the formal solution formula to the problem

$$
\left\{\begin{array}{rlr}
\partial_{t} u(t, x)=\partial_{x}^{2} u(t, x), & & \text { for }(t, x) \in(0, \infty)^{2}, \\
\partial_{x} u(t, 0)=0, & & \text { for } t \in(0, \infty), \\
u(0, x)=\varphi(x), & & \text { for } x \in(0, \infty),
\end{array}\right.
$$

by the method of reflection.
6. (a) (10 points) Let $u$ be a regular function and satisfies

$$
\partial_{t} u-\partial_{x}^{2} u \leq 0, \quad \text { on } \Omega=[0, T] \times[0, L] .
$$

Show that

$$
\max _{\Omega} u(t, x)=\max _{\partial \Omega} u(t, x),
$$

where $\partial \Omega=\{(t, x) \in \Omega \mid$ either $t=0$, or $x=0$, or $x=L\}$.
(b) (5 points) Denote $\Omega=[0, T] \times[0, L]$. Let $u$ be a regular solution of

$$
\left\{\begin{aligned}
\partial_{t} u(t, x) & =\partial_{x}^{2} u(t, x)+f(t, x), & & \text { on } \Omega, \\
u(0, x) & =0, & & \text { for } x \in[0, L], \\
u(t, 0) & =u(t, L)=0, & & \text { for } t \in[0, T] .
\end{aligned}\right.
$$

Show that

$$
\max _{x \in L} u(t, x) \leq t \max _{\Omega}|f(t, x)|, \quad \text { for any } t \in[0, T] .
$$

## END OF THE QUESTIONS

